70 research outputs found

    Searching for Dark Matter Annihilation with IceCube and P-ONE

    Full text link
    We present a new search for weakly interacting massive particles utilizing ten years of public IceCube data, setting more stringent bounds than previous IceCube analysis on massive dark matter to neutrino annihilation. We also predict the future potential of the new neutrino observatory, P-ONE, showing that it may even exceed the sensitivities of gamma-ray searches by about 1-2 orders of magnitude in 1-10 TeV regions. This analysis considers the diffuse dark matter self-annihilation to neutrinos via direct and indirect channels, from the galactic dark matter halo and extra-galactic sources. We also predict that P-ONE will be capable of pushing these bounds further than IceCube, even reaching the thermal relic abundance utilizing a galactic center search for extended run-time.Comment: We included some details about the statistical analysi

    New Constraints on Supersymmetry Using Neutrino Telescopes

    Get PDF
    We demonstrate that megaton-mass neutrino telescopes are able to observe the signal from long-lived particles beyond the Standard Model, in particular the stau, the supersymmetric partner of the tau lepton. Its signature is an excess of charged particle tracks with horizontal arrival directions and energy deposits between 0.1 and 1 TeV inside the detector. We exploit this previously-overlooked signature to search for stau particles in the publicly available IceCube data. The data shows no evidence of physics beyond the Standard Model. We derive a new lower limit on the stau mass of 320320 GeV (95\% C.L.) and estimate that this new approach, when applied to the full data set available to the IceCube collaboration, will reach world-leading sensitivity to the stau mass (mτ~=450GeVm_{\tilde{\tau}}=450\,\mathrm{GeV})

    New Signal of Atmospheric Tau Neutrino Appearance: Sub-GeV Neutral-Current Interactions in JUNO

    Full text link
    We propose the first practical method to detect atmospheric tau neutrino appearance at sub-GeV energies, which would be an important test of νμντ\nu_\mu \rightarrow \nu_\tau oscillations and of new-physics scenarios. In the Jiangmen Underground Neutrino Observatory (JUNO; starts in 2024), active-flavor neutrinos eject neutrons from carbon via neutral-current quasielastic scattering. This produces a two-part signal: the prompt part is caused by the scattering of the neutron in the scintillator, and the delayed part by its radiative capture. Such events have been observed in KamLAND, but only in small numbers and were treated as a background. With νμντ\nu_\mu \rightarrow \nu_\tau oscillations, JUNO should measure a clean sample of 55 events/yr; with simple νμ\nu_\mu disappearance, this would instead be 41 events/yr, where the latter is determined from Super-Kamiokande charged-current measurements at similar neutrino energies. Implementing this method will require precise laboratory measurements of neutrino-nucleus cross sections or other developments. With those, JUNO will have 5σ5\sigma sensitivity to tau-neutrino appearance in 5 years exposure, and likely sooner.Comment: 12 pages, 8 figure

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent

    Get PDF
    corecore